Image 2 Image 3 Image 3 Image 3

华为的大模型终于来了,我的评价是:相当震撼。

频道:行业资讯 日期: 浏览:808

华为的大模型终于来了,我的评价是:相当震撼。

老被人说在大模型竞赛中掉队的华为,这次终于带着它的家伙事儿来了。

这不,在昨天的华为开发者大会 2023 上,华为就狠狠地秀了一把。

将近三个小时的发布会,还是继承了华为以往大杂烩的风格,看得世超是眼花缭乱。

不过,总结下来其实也就突出了一个主题:盘古大模型 3.0 。

华为的大模型终于来了,我的评价是:相当震撼。

其实就在前几天,当别的大模型还在比各种评分的时候,盘古靠着世界顶级期刊 Nature 认证的金字招牌,以一种别具一格的方式进入了大家的视野。

华为的大模型终于来了,我的评价是:相当震撼。

据说,加入了盘古大模型,气象预测的速度提高了 10000 倍以上,几秒钟就能出结果,台风打哪来,几点来,啥时候走,都能给你预测得明明白白的。

最主要的是,它的预测精度甚至超过了号称全球最强的欧洲气象中心的 IFS 系统,算是头一个 AI 预测赢了传统数值预测的产品。

要知道,以往的 AI 气象预测多是基于 2D 神经网络开发,但气象这玩意实在是太复杂了,2D 着实有点儿吃不消。

而且,之前的 AI 模型会在预测的过程当中不断累计迭代的误差,容易影响到结果的精确性。

所以 AI 预测方法一直都不咋受待见。

而盘古气象大模型牛就牛在,他们用了个叫 3DEST 的三维神经网络来处理气象数据, 2D 干不了的那就换 3D 来。

3DEST 的网络训练和推理策略

华为的大模型终于来了,我的评价是:相当震撼。

针对迭代误差的问题,模型还用了个 “ 层次化时域聚合策略 ” 来减少迭代误差,从而提高预报的精度。

这词儿虽然听起来挺容易被唬住的,但其实很好理解。

就比如,之前的 AI 气象预测模型 FourCastNet ,在台风来之前,它会提前 6 小时进行预测,在这 6 个小时里,模型会多次计算台风到底啥时候来。

可能一会儿算出来 5 个小时,一会儿又算出来 4 个半小时,这些结果加到一起误差就大了。

但盘古气象大模型想了个法子,训练了 4 个不同预报间隔的模型,分别是 1 小时迭代 1 次,还有 3 小时、 6 小时和 24 小时迭代 1 次。

再根据具体的气象预测需求,选择相应的模型进行迭代。

华为的大模型终于来了,我的评价是:相当震撼。

就比如说,咱们如果要预测未来 7 天的天气,那就让 24 小时的模型迭代 7 次;预测 20 个小时就是 6 小时的模型迭代 3 次 +1 小时的迭代 2 次。

迭代次数越少,误差也就越小。

这波操作,让天气预报又迈向了一个新的 level 。

不过,可能有差友开始犯嘀咕了,人家的大模型都是生成图像和文字,怎么到华为这就变成了天气预报了?

有一说一啊,这盘古大模型跟咱之前接触到的 ChatGPT 、 Midjourney 的确不太一样,人家做的是行业的生意。

华为的大模型终于来了,我的评价是:相当震撼。

简单来理解,就是盘古大模型咱个人一般用不上。

它并不是大家期待的 ChatGPT“ 克星 ” ,而是针对平时不太能接触到的To B 市场。

咱先不提难与不难,至少华为这么多年积累下来的企业客户资源,确实很容易变现。

而且华为这次的发布会可不止带来了气象预测模型这一个狠角色。

40 多年都没发现新的抗生素,盘古药物分子大模型一来就找着了超级抗菌药 Drug X ,而且药物的研发周期从数年缩短至几个月,研发成本降低 70% 。

华为的大模型终于来了,我的评价是:相当震撼。

盘古矿山大模型也能深入到采煤的 1000 多个工序之中,而且光是里头挑选精煤的这一个环节,就能让精煤回收率提升 0.1% 到 0.2% 。

要知道,一家年产 1000 万吨焦煤的选煤厂,每提升 0.1% 精煤产率,每年就能多 1000 万的利润。

这可都是白花花的银子啊。。。

事实上,除了上边儿咱提到的天气预测、药物研发和选煤,盘古大模型在很多行业里都已经用起来了。

华为的大模型终于来了,我的评价是:相当震撼。

发布会上,华为云人工智能首席科学家田奇就表示,华为云人工智能项目已经应用在了超过 1000 个项目中,其中 30% 用在客户的核心生产系统里,平均推动客户盈利能力提升了 18% 。

而华为能够量产这些各不相同的行业大模型,要归功于华为盘古大模型 3.0 的 5+N+X 三层架构。

正是这种结构,让盘古能够快速落地到各个行业里。

为什这么说呢?

因为 AI 落地行业,数据是一大难点。

张平安在发布会上就说, “ 由于行业数据获取难,技术与行业结合难,大模型在行业的落地进展较慢。 ” 

而盘古则很巧妙,通过 5+N+X 的三层架构,直接把这个大难题拆成了 3 个小问题来解决。

首先,是先让盘古 L0 层的 5 个大模型,学习了上百 TB 的百科知识、文学作品、程序代码等文本数据,以及数 10 亿张带文本标签的互联网图像。

华为的大模型终于来了,我的评价是:相当震撼。

咱们可以理解为,先让第一层 L0 的大模型( 自然语言大模型、视觉大模型、多模态大模型、预测大模型、科学计算大模型这 5 个基础大模型 )建立起基本的认知,也就是有点像咱们大学前的素质教育阶段。

然后,在第二层 L1 中的模型,则是让 L0 中的某一个基础大模型学习 N 个相关行业的数据形成的。这就像大学的本科阶段,需要选择各种专业去学习。

华为的大模型终于来了,我的评价是:相当震撼。

打个比方,医院里的 CT 影像检测跟工厂的图像质检虽说用的都是视觉大模型。

但毕竟一个是医院,一个是工厂,使用场景完全不一样,光靠基础大模型那肯定行不通,但如果把行业数据加进去,可能就有惊喜了。

华为的大模型终于来了,我的评价是:相当震撼。

最后的 L2 ,则类似研究生,会在具体行业的基础上再细化到某个场景。比如在仓储物流行业里,货物的运输、入库、出库可能都需要用到不一样的部署模型。

与此同时呢,华为还在里头加入一个反馈环节,有点进公司实习内味了。

根据他们的说法,过去开发一个 GPT-3 规模的行业大模型,通常需要 5 个月;而有了这套东西,开发周期能缩短至原来的 1/5 。

同时很多行业数据集小的限制也能被解决。比如造大飞机这种很细很细的行业,也能有大模型。

除了这一套大模型,华为这次还提出了个非常有意思的东西——算力国产化。

众所周知,咱们在 AI 算力方面,确实是比较尴尬。

一来, AI 行业的核心设备英伟达的 H100/A100 咱们买不到,二来,即使英伟达 “ 贴心 ” 出了平替 H800 ,但是也有所保留。比如,在传输速率上就砍了不少。

在大模型动辄几个月训练时间的背景之下,这就很容易被算力更强的国外同行弯道超车。

而这一回,针对这个问题,华为还是掏了些真家伙出来的。

比如,在纸面性能上,华为的昇腾 910 处理器已经够上了英伟达 A100 。

不过实际应用起来,还是有一些差距的。而且 A100 这也不是英伟达的终极武器。

但是,昇腾已经受到了不少友商的认可。华为甚至在发布会上,直接表示 “ 中国一半大模型的算力都是由他们提供的 ” 。

当然,华为这会儿在算力上的亮点,更像是整个软件生态带来的。

比如,根据发布会的说法,算上 AI 昇腾云算力底座、计算框架 CANN 。。。等环节,华为在训练大模型方面,效率是业界主流 GPU 的 1.1 倍。

还有,他们给用户制定好了全套的应用套餐。

例如,美图仅用 30 天就将 70 个模型迁移到了华为生态。同时华为还表示,在双方的努力下,AI 性能较原有方案提升了 30% 。

还是挺可观的。

而且华为还说,他们现在有近 400 万的开发者,这个数量,是和英伟达 CUDA 生态对齐了。

这一系列的动作,算是把短板补上了一部分

总的来说,一场华为发布会看下来差评君觉得华为在 AI 方面的布局是很深刻的,他们早就开始思考 “AI 真正能带给我们什么 ” 这个问题了。

过去半年里, AI 行业虽然掌声雷动,但是真正落到行业层面,多少有些尴尬。

而华为的这一次动作,恰好印证了如任正非说的:

 “ 未来在 AI 大模型方面会风起云涌的,不只是微软一家。人工智能软件平台公司对人类社会的直接贡献可能不到 2% , 98% 都是对工业社会、农业社会的促进。 ” 

AI 领域,真正的大时代还在后头。

撰文:糖醋排骨&及格   编辑:江江&面线   封面:焕妍

图片、资料来源:

极客公园, 6000 字详解盘古大模型:能否撑起世界 AI 另一极?

中国经济网,华为最新消息,在 AI 大模型领域重大升级

财经杂志,胡厚崑:大模型时代,华为的定位和路径

远川研究所,盘古 3.0 :中国大模型突围的一个典型样本

知乎,华为盘古天气大模型:Pangu-Weather 打破中期天气预报 AI-NWP 争论

络绎科学,华为盘古气象大模型登 Nature 正刊:破解气象预测难题,比传统方法快 1 万倍

0 留言

评论

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。
验证码